首页 | 本学科首页   官方微博 | 高级检索  
     


Depth-based complexity traces of graphs
Authors:Lu Bai  Edwin R. Hancock
Affiliation:Department of Computer Science, The University of York, York YO10 5DD, UK
Abstract:In this paper we aim to characterize graphs in terms of a structural measure of complexity. Our idea is to decompose a graph into layered substructures of increasing size, and then to measure the information content of these substructures. To locate dominant substructures within a graph, we commence by identifying a centroid vertex which has the minimum shortest path length variance to the remaining vertices. For each graph a family of centroid expansion subgraphs is derived from the centroid vertex in order to capture dominant structural characteristics of the graph. Since the centroid vertex is identified through a global analysis of the shortest path length distribution, the expansion subgraphs provide a fine representation of a graph structure. We then show how to characterize graphs using depth-based complexity traces. Here we explore two different strategies. The first strategy is to measure how the entropies on the centroid expansion subgraphs vary with the increasing size of the subgraphs. The second strategy is to measure how the entropy differences vary with the increasing size of the subgraphs. We perform graph classification in the principal component space of the complexity trace vectors. Experiments on graph datasets abstracted from some bioinformatics and computer vision databases demonstrate the effectiveness and efficiency of the proposed graph complexity traces. Our methods are competitive to state of the art methods.
Keywords:Depth-based complexity traces   Entropy   Entropy difference   Centroid vertex   Centroid expansion subgraphs   Graph classification
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号