首页 | 本学科首页   官方微博 | 高级检索  
     

改进BP神经网络在流型判别中的应用
引用本文:王妍芃,林宗虎. 改进BP神经网络在流型判别中的应用[J]. 热能动力工程, 2001, 16(1): 63-65,90
作者姓名:王妍芃  林宗虎
作者单位:西安交通大学 能源与动力工程学院,;西安交通大学 能源与动力工程学院,
基金项目:国家自然科学基金资助项目! (5 9995 46 0 )
摘    要:提出了一种应用于人工神经网络进行流型判据的新方法。采用了自适应梯度下降法和改进模拟退火法等措施,加快了BP网络的收敛速度,增强了其跳出局部检小值的能力,提高了神经网络模拟非线性系统的能力,并分析了可作为流型判别用的神经网络的输入参数、输出参数。为了证实该方法的可行性,应用前人的实验数据进行验证。证实该方法是一种十分有效的两相及相流流型判别方法。

关 键 词:神经网络  两相流  多相流  流型判别
文章编号:1001-2060(2001)01-0063-04

The Application of an Improved BP Neural Network in the Discrimination of Various Flow Patterns
Wang Yan-peng,LIN Zong-hu. The Application of an Improved BP Neural Network in the Discrimination of Various Flow Patterns[J]. Journal of Engineering for Thermal Energy and Power, 2001, 16(1): 63-65,90
Authors:Wang Yan-peng  LIN Zong-hu
Abstract:A new method for the discrimination of flow patterns is proposed in this paper, which is based on the use of an artificial neural network. With the help of a self adaptive gradient reduction method and an improved simulation annealing approach, etc the convergence rate of a BP network can be accelerated. There emerged, as a result, an enhancement in the network's ability to avoid a local minimum magnitude, which contributes to an increased capability of the network to simulate a nonlinear system. In addition, an analysis was made of the network input and output parameters, which can be used for pattern discrimination. To demonstrate the feasibility of the recommended method, the authors have employed the experimental data of scholars forerunners to check and verify their work procedures. It has been proved that the above method can be assessed as a very effective one for the discrimination of two phase and multi phase flow patterns.
Keywords:neural network   two phase flow   multi phase flow   flow pattern discriminatL
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《热能动力工程》浏览原始摘要信息
点击此处可从《热能动力工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号