首页 | 本学科首页   官方微博 | 高级检索  
     


Online multi-view subspace learning via group structure analysis for visual object tracking
Authors:Wanqi Yang  Yinghuan Shi  Yang Gao  Ming Yang
Affiliation:1.School of Computer Science and Technology,Nanjing Normal University,Nanjing,China;2.State Key Laboratory for Novel Software Technology,Nanjing University,Nanjing,China
Abstract:
In this paper, we focus on incrementally learning a robust multi-view subspace representation for visual object tracking. During the tracking process, due to the dynamic background variation and target appearance changing, it is challenging to learn an informative feature representation of tracking object, distinguished from the dynamic background. To this end, we propose a novel online multi-view subspace learning algorithm (OMEL) via group structure analysis, which consistently learns a low-dimensional representation shared across views with time changing. In particular, both group sparsity and group interval constraints are incorporated to preserve the group structure in the low-dimensional subspace, and our subspace learning model will be incrementally updated to prevent repetitive computation of previous data. We extensively evaluate our proposed OMEL on multiple benchmark video tracking sequences, by comparing with six related tracking algorithms. Experimental results show that OMEL is robust and effective to learn dynamic subspace representation for online object tracking problems. Moreover, several evaluation tests are additionally conducted to validate the efficacy of group structure assumption.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号