首页 | 本学科首页   官方微博 | 高级检索  
     


Tribological characteristics of self-assembled nanometer film deposited on phosphorylated 3-aminopropyltriethoxysilane
Authors:J LI and X Z LI
Affiliation:(1) Nanoprobe Laboratory for Bio- and Nanotechnology and Biomimetics (NLB2), Ohio State University, 201 W. 19th Avenue, 43210-1142 Columbus, OH, USA
Abstract:Thin films deposited on the phosphonate 3-aminopropyltriethoxysilane (APTES) self-assembled monolayer (SAM) were prepared on the hydroxylated silicon substrate by a self-assembling process from specially formulated solution. Chemical compositions of the films and chemical state of the elements were detected by X-ray photoelectron spectrometry (XPS). The thickness of the films was determined with an ellipsometer, while the morphologies and nanotribological properties of the samples were analyzed by means of atomic force microscopy (AFM). As the results, the target film was obtained and reaction might have taken place between the thin films and the silicon substrate. It was also found that the thin films showed the lowest friction and adhesion followed by APTES-SAM and phosphorylated APTES-SAM, whereas silicon substrate showed high friction and adhesion. Microscale scratch/wear studies clearly showed that thin films were much more scratch/wear-resistant than the other samples. The superior friction reduction and scratch/wear resistance of thin films may be attributed to low work of adhesion of nonpolar terminal groups and the strong bonding strength between the films and the substrate.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号