首页 | 本学科首页   官方微博 | 高级检索  
     


Uncovering and predicting the dynamic process of information cascades with survival model
Authors:Linyun Yu  Peng Cui  Fei Wang  Chaoming Song  Shiqiang Yang
Affiliation:1.Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology,Tsinghua University,Beijing,China;2.School of Software Engineering,Beijing University of Technology,Beijing,China;3.Department of Physics,University of Miami,Coral Gables,USA
Abstract:Cascades are ubiquitous in various network environments. Predicting these cascades is decidedly nontrivial in various important applications, such as viral marketing, epidemic prevention, and traffic management. Most previous works have focused on predicting the final cascade sizes. As cascades are dynamic processes, it is always interesting and important to predict the cascade size at any given time, or to predict the time when a cascade will reach a certain size (e.g., the threshold for an outbreak). In this paper, we unify all these tasks into a fundamental problem: cascading process prediction. That is, given the early stage of a cascade, can we predict its cumulative cascade size at any later time? For such a challenging problem, an understanding of the micromechanism that drives and generates the macrophenomena (i.e., the cascading process) is essential. Here, we introduce behavioral dynamics as the micromechanism to describe the dynamic process of an infected node’s neighbors getting infected by a cascade (i.e., one-hop sub-cascades). Through data-driven analysis, we find out the common principles and patterns lying in the behavioral dynamics and propose the novel NEtworked WEibull Regression model for modeling it. We also propose a novel method for predicting cascading processes by effectively aggregating behavioral dynamics and present a scalable solution to approximate the cascading process with a theoretical guarantee. We evaluate the proposed method extensively on a large-scale social network dataset. The results demonstrate that the proposed method can significantly outperform other state-of-the-art methods in multiple tasks including cascade size prediction, outbreak time prediction, and cascading process prediction.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号