首页 | 本学科首页   官方微博 | 高级检索  
     


An Ordered Ni6‐Ring Superstructure Enables a Highly Stable Sodium Oxide Cathode
Authors:Peng‐Fei Wang  Mouyi Weng  Yao Xiao  Zongxiang Hu  Qinghao Li  Meng Li  Yi‐Ding Wang  Xin Chen  Xinan Yang  Yuren Wen  Ya‐Xia Yin  Xiqian Yu  Yinguo Xiao  Jiaxin Zheng  Li‐Jun Wan  Feng Pan  Yu‐Guo Guo
Abstract:
Sodium‐based layered oxides are among the leading cathode candidates for sodium‐ion batteries, toward potential grid energy storage, having large specific capacity, good ionic conductivity, and feasible synthesis. Despite their excellent prospects, the performance of layered intercalation materials is affected by both a phase transition induced by the gliding of the transition metal slabs and air‐exposure degradation within the Na layers. Here, this problem is significantly mitigated by selecting two ions with very different M? O bond energies to construct a highly ordered Ni6‐ring superstructure within the transition metal layers in a model compound (NaNi2/3Sb1/3O2). By virtue of substitution of 1/3 nickel with antimony in NaNiO2, the existence of these ordered Ni6‐rings with super‐exchange interaction to form a symmetric atomic configuration and degenerate electronic orbital in layered oxides can not only largely enhance their air stability and thermal stability, but also increase the redox potential and simplify the phase‐transition process during battery cycling. The findings reveal that the ordered Ni6‐ring superstructure is beneficial for constructing highly stable layered cathodes and calls for new paradigms for better design of layered materials.
Keywords:cathode  electrochemistry  Ni6‐ring  sodium‐ion batteries  superstructure
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号