首页 | 本学科首页   官方微博 | 高级检索  
     


Biocorrosion Zoomed In: Evidence for Dealloying of Nanometric Intermetallic Particles in Magnesium Alloys
Authors:Martina Cihova,Patrik Schmutz,Robin Sch  ublin,J  rg F. L  ffler
Affiliation:Martina Cihova,Patrik Schmutz,Robin Schäublin,Jörg F. Löffler
Abstract:
Biodegradable magnesium alloys generally contain intermetallic phases on the micro‐ or nanoscale, which can initiate and control local corrosion processes via microgalvanic coupling. However, the experimental difficulties in characterizing active degradation on the nanoscale have so far limited the understanding of how these materials degrade in complex physiological environments. Here a quasi‐in situ experiment based on transmission electron microscopy (TEM) is designed, which enables the initial corrosion attack at nanometric particles to be accessed within the first seconds of immersion. Combined with high‐resolution ex situ cross‐sectional TEM analysis of a well‐developed corrosion‐product layer, mechanistic insights into Mg‐alloys' degradation on the nanoscale are provided over a large range of immersion times. Applying this methodology to lean Mg–Zn?Ca alloys and following in detail the dissolution of their nanometric Zn‐ and Ca‐rich particles the in statu nascendi observation of intermetallic‐particle dealloying is documented for magnesium alloys, where electrochemically active Ca and Mg preferentially dissolve and electropositive Zn enriches, inducing the particles' gradual ennoblement. Based on electrochemical theory, here, the concept of cathodic‐polarization‐induced dealloying, which controls the dynamic microstructural changes, is presented. The general prerequisites for this new dealloying mechanism to occur in multicomponent alloys and its distinction to other dealloying modes are also discussed.
Keywords:biocorrosion  dealloying  intermetallic phases  magnesium alloys  transmission electron microscopy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号