首页 | 本学科首页   官方微博 | 高级检索  
     

基于稀疏贝叶斯学习的CT图像重构
引用本文:何国栋,汪慧兰,章姗姗,徐建林. 基于稀疏贝叶斯学习的CT图像重构[J]. 无线电通信技术, 2021, 0(2): 232-236
作者姓名:何国栋  汪慧兰  章姗姗  徐建林
作者单位:安徽师范大学物理与电子信息学院;上海市胸科医院上海交通大学附属胸科医院
基金项目:安徽省高校省级自然科学基金重大项目(KJ2019ZD35);上海交通大学"交大之星"计划医工交叉研究项目(YG2019QNB33)。
摘    要:计算机断层成像是医学检查的常用方法,但是检查中过量的辐射可能对病人造成二次伤害.基于此提出了一种稀疏贝叶斯学习(Sparse Bayesian Learning,SBL)的肺部计算机断层成像(Computed Tomography,CT)图像重构方法,首先应用高斯随机分布矩阵对肺部图像进行测量,并建立基于小波变换的稀疏...

关 键 词:计算机断层成像  压缩感知  稀疏贝叶斯学习

CT Image Reconstruction Based on Sparse Bayesian Learning
HE Guodong,WANG Huilan,ZHANG Shanshan,XU Jianlin. CT Image Reconstruction Based on Sparse Bayesian Learning[J]. Radio Communications Technology, 2021, 0(2): 232-236
Authors:HE Guodong  WANG Huilan  ZHANG Shanshan  XU Jianlin
Affiliation:(College of Physics and Electronic Information,Anhui Normal University,Wuhu 241003,China;Shanghai Chest Hospital,Shanghai Jiao Tong University,Shanghai 200030,China)
Abstract:Computed tomography is a common method for medical examination.However,excessive radiation may cause secondary injury to patients.A lung CT image reconstruction method based on sparse Bayesian learning is proposed.Firstly,Gaussian random distribution matrix is used to measure lung image,and a sparse dictionary based on wavelet transform is established.Finally,sparse Bayesian learning algorithm is used to reconstruct the image.Simulation experimental results show that the method can effectively reconstruct lung image.When the compression ratio is 0.6,the peak signal-to-noise ratio of the reconstructed lung tissue image reaches 34.1809,which can meet the needs of medical examination.This method can reduce radiation injury in medical examination,which has important theoretical research significance and practical application value.
Keywords:computed tomography  compressive sensing  sparse Bayesian learning
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号