摘 要: | 目的 应对快速多变的市场,提前预知市场发展,制定相应的排产计划,使企业在竞争中占据先发优势。方法 目前基于灰色神经网络的预测算法,准确地预测产品需求通常需要连续且大量的样本数据,对小数据非线性系统的预测结果精确度低、可靠性差,针对这一问题,提出一种耦合遗传算法的灰色神经网络预测方法,综合灰色模型和神经网络理论,构建了面向产品订单量需求预测的灰色神经网络模型;通过电力机车产品实例分析了模型的预测性能;为解决预测过程中模型早熟收敛的问题,利用遗传算法对训练网络的权重和阈值进行了迭代优化。结论 研究结果表明,优化后产品预测模型的精确性和鲁棒性得到提高,验证了所设计方法的可行性。
|