首页 | 本学科首页   官方微博 | 高级检索  
     


Lead‐free (K,Na)NbO3‐based ceramics with high optical transparency and large energy storage ability
Authors:Qizhen Chai  Dong Yang  Xumei Zhao  Xiaolian Chao  Zupei Yang
Affiliation:Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, China
Abstract:Highly transparent lead‐free (1‐x)K0.5Na0.5NbO3xSr(Zn1/3Nb2/3)O3 (KNN–xSZN) ferroelectric ceramics have been synthesized via a conventional pressureless sintering method. All samples are optically clear, showing high transmittance in the visible and near‐infrared regions (~70% and ~80% at 0.5 mm of thickness, respectively). This exceptionally good transmittance is due to the pseudo‐cubic phase structure as well as the dense and fine‐grained microstructure. In addition, a high energy storage density of 3.0 J/cm3 has been achieved for the 0.94K0.5Na0.5NbO3–0.06Sr(Zn1/3Nb2/3)O3 ceramics with submicron‐sized grains (~136 nm). The main reason is likely to be the typical relaxor‐like behavior characterized by diffuse phase transition, in addition to the dense and fine‐grained microstructure. This study demonstrates that the 0.94K0.5Na0.5NbO3–0.06Sr(Zn1/3Nb2/3)O3 ceramic is a promising candidate of lead‐free transparent ferroelectric ceramics for new areas beyond transparent electronic device applications.
Keywords:energy harvesting  lead‐free ceramics  microstructure  phase transformations  transparent ceramics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号