首页 | 本学科首页   官方微博 | 高级检索  
     

加权观测融合非线性无迹卡尔曼滤波算法
引用本文:郝钢,叶秀芬,陈亭. 加权观测融合非线性无迹卡尔曼滤波算法[J]. 控制理论与应用, 2011, 28(6): 753-758
作者姓名:郝钢  叶秀芬  陈亭
作者单位:1. 哈尔滨工程大学自动化学院,黑龙江哈尔滨150001;黑龙江大学电子工程学院,黑龙江哈尔滨150080
2. 哈尔滨工程大学自动化学院,黑龙江哈尔滨,150001
基金项目:教育部科学技术研究重点资助项目(209038); 黑龙江省自然科学基金资助项目(F201015).
摘    要:针对非线性系统的无迹卡尔曼滤波器(UKF),应用加权最小二乘(WLS)法,提出了加权观测融合UKF滤波算法.证明了加权观测融合UKF滤波算法与集中式观测融合UKF滤波算法在数值上的完全等价性,因而具有全局最优性.一个带两传感器非线性系统的仿真例子说明了两种融合算法的有效性及等价性.

关 键 词:非线性滤波  无迹卡尔曼滤波器  加权观测融合
收稿时间:2010-04-20
修稿时间:2010-07-23

Weighted measurement fusion algorithm for nonlinear unscented Kalman filter
HAO Gang,YE Xiu-fen and CHEN Ting. Weighted measurement fusion algorithm for nonlinear unscented Kalman filter[J]. Control Theory & Applications, 2011, 28(6): 753-758
Authors:HAO Gang  YE Xiu-fen  CHEN Ting
Affiliation:College of Automation, Harbin Engineering University; Electronic Engineering Institute, Heilongjiang University,College of Automation, Harbin Engineering University,College of Automation, Harbin Engineering University
Abstract:For nonlinear systems, based on the Unscented Kalman filter(UKF), the algorithm of the weighted measurement fusion UKF is presented by using the weighted least squares(WLS) method. It is proved that the weighted measurement fusion UKF is completely numerically identical to the centralized measurement fusion UKF algorithm; and thus, the measurement fusion UKF has global optimality. A simulation example for the nonlinear systems with two sensors shows the effectiveness of the two measurement fusion UKF and verifies the completely numerically equivalence.
Keywords:nonlinear filtering   unscented Kalman filter   weighted measurement fusion
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《控制理论与应用》浏览原始摘要信息
点击此处可从《控制理论与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号