首页 | 本学科首页   官方微博 | 高级检索  
     


On-line graph coloring of {mathbb{P}_5}-free graphs
Authors:Iwona Cieślik
Affiliation:(1) Theoretical Computer Science Department, Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland
Abstract:Kierstead et al. (SIAM J Discret Math 8:485–498, 1995) have shown 1 that the competitive function of on-line coloring for $${mathbb{P}}_5$$ -free graphs (i.e., graphs without induced path on 5 vertices) is bounded from above by the exponential function $${left( 4^{chi (mathbb{G})} - 1right) / 3}$$ . No nontrivial lower bound was known. In this paper we show the quadratic lower bound $$tiny{left( {begin{array}{*{20}c} {{chi ({mathbb{G}}) + 1}}  {2}  end{array} } right) }$$ . More precisely, we prove that $$tiny{left( {begin{array}{*{20}c} {{chi ({mathbb{G}}) + 1}}  {2}  end{array} } right) }$$ is the exact competitive function for ($${mathbb{C}}_4, {mathbb{P}}_5$$)-free graphs. In this paper we also prove that 2$$kappa({mathbb{G})}$$ - 1 is the competitive function of the best clique covering on-line algorithm for ($${mathbb{C}}_4, {mathbb{P}}_5$$)-free graphs.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号