首页 | 本学科首页   官方微博 | 高级检索  
     


A low-noise fully-differential CMOS preamplifier for neural recording applications
Authors:ZHANG Xu  PEI WeiHua  HUANG BeiJu  GUAN Ning & CHEN HongDa State
Affiliation:Key Laboratory on Integrated Optoelectronics,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China
Abstract:A fully-differential bandpass CMOS preamplifier for extracellular neural recording is presented in this paper.The capacitive-coupled and capacitive-feedback topology is adopted.We describe the main noise sources of the proposed preamplifier and discuss the methods for achieving the lowest input-referred noise.The preamplifier has a midband gain of 43 dB and a DC gain of 0.The-3 dB upper cut-off frequency of the preamplifier is 6.8 kHz.The lower cut-off frequency can be adjusted for amplifying the field or action potentials located in different bands.It has an input-referred noise of 3.36 μVrms integrated from 1 Hz to 6.8 kHz for recording the local field potentials(LFPs)and the mixed neural spikes with a power dissipation of 24.75 μW from 3.3 V supply.When the passband is configured as 100 Hz-6.8 kHz for only recording spikes,the noise is measured to be 3.01 μVrms.The 0.115 mm2 prototype chip is designed and fabricated in 0.35-μm N-well CMOS(complementary metal oxide semiconductor)2P4M process.
Keywords:neural signal amplifier  low noise  low power  subthreshold circuit design  noise efficiency factor(NEF)
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号