首页 | 本学科首页   官方微博 | 高级检索  
     


Combining belief networks and neural networks for scenesegmentation
Authors:Xiaojuan Feng Williams   C.K.I. Felderhof   S.N.
Affiliation:Informatics Lab., Nat. Inst. for Biol. Stand. & Control, Potters Bar;
Abstract:We are concerned with the problem of image segmentation, in which each pixel is assigned to one of a predefined finite number of labels. In Bayesian image analysis, this requires fusing together local predictions for the class labels with a prior model of label images. Following the work of Bouman and Shapiro (1994), we consider the use of tree-structured belief networks (TSBNs) as prior models. The parameters in the TSBN are trained using a maximum-likelihood objective function with the EM algorithm and the resulting model is evaluated by calculating how efficiently it codes label images. A number of authors have used Gaussian mixture models to connect the label field to the image data. We compare this approach to the scaled-likelihood method of Smyth (1994) and Morgan and Bourlard (1995), where local predictions of pixel classification from neural networks are fused with the TSBN prior. Our results show a higher performance is obtained with the neural networks. We evaluate the classification results obtained and emphasize not only the maximum a posteriori segmentation, but also the uncertainty, as evidenced e.g., by the pixelwise posterior marginal entropies. We also investigate the use of conditional maximum-likelihood training for the TSBN and find that this gives rise to improved classification performance over the ML-trained TSBN
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号