Combining belief networks and neural networks for scenesegmentation |
| |
Authors: | Xiaojuan Feng Williams C.K.I. Felderhof S.N. |
| |
Affiliation: | Informatics Lab., Nat. Inst. for Biol. Stand. & Control, Potters Bar; |
| |
Abstract: | We are concerned with the problem of image segmentation, in which each pixel is assigned to one of a predefined finite number of labels. In Bayesian image analysis, this requires fusing together local predictions for the class labels with a prior model of label images. Following the work of Bouman and Shapiro (1994), we consider the use of tree-structured belief networks (TSBNs) as prior models. The parameters in the TSBN are trained using a maximum-likelihood objective function with the EM algorithm and the resulting model is evaluated by calculating how efficiently it codes label images. A number of authors have used Gaussian mixture models to connect the label field to the image data. We compare this approach to the scaled-likelihood method of Smyth (1994) and Morgan and Bourlard (1995), where local predictions of pixel classification from neural networks are fused with the TSBN prior. Our results show a higher performance is obtained with the neural networks. We evaluate the classification results obtained and emphasize not only the maximum a posteriori segmentation, but also the uncertainty, as evidenced e.g., by the pixelwise posterior marginal entropies. We also investigate the use of conditional maximum-likelihood training for the TSBN and find that this gives rise to improved classification performance over the ML-trained TSBN |
| |
Keywords: | |
|
|