首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进的BP神经网络学习算法的变压器故障诊断
引用本文:于永军,南东亮. 基于改进的BP神经网络学习算法的变压器故障诊断[J]. 水电能源科学, 2014, 32(11): 176-178,206
作者姓名:于永军  南东亮
作者单位:国网新疆电力公司 电力科学研究院, 新疆 乌鲁木齐 830011;国网新疆电力公司 电力科学研究院, 新疆 乌鲁木齐 830011
摘    要:
电力变压器的故障除了给其自身带来重大损失外,还对电力系统的安全造成很大影响。利用BP神经网络对变压器故障进行诊断,针对BP神经网络学习率的缺点,提出了一种跟踪型自适应学习率的确定方法,该方法仅需整定一个参数,有效地提高了BP神经网络的收敛性和训练时间,进而通过构建变压器故障诊断训练样本集,验证了该方法的可行性,获得了更精确的诊断结果。

关 键 词:变压器; 故障诊断; BP神经网络; 跟踪自适应

Transformer Fault Diagnosis Based on Improved BP Neural Network Algorithm
YU Yongjun and NAN Dongliang. Transformer Fault Diagnosis Based on Improved BP Neural Network Algorithm[J]. International Journal Hydroelectric Energy, 2014, 32(11): 176-178,206
Authors:YU Yongjun and NAN Dongliang
Affiliation:State Grid Electric Power Research Institute of Xinjiang Electric Power Company, Urumqi 830011, China;State Grid Electric Power Research Institute of Xinjiang Electric Power Company, Urumqi 830011, China
Abstract:
Failure of power transformers will bring significant losses to itself and cause great impact on the power system security. This paper improves fault diagnosis method of transformer based on BP neural network. Aiming at the disadvantage of learning rate of BP neural network, a self-adaptive tracking method is proposed to gain learning rate with only determining one parameter, which improves convergence and training time of BP neural network. Then the training sample set of transformer fault diagnosis is established to verify the feasibility of the proposed method. Finally, the accurate diagnosis results is obtained.
Keywords:transformer   fault diagnosis   BP neural network   tracking self-adaptive
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号