首页 | 本学科首页   官方微博 | 高级检索  
     


Spanners in sparse graphs
Authors:Feodor F. Dragan  Fedor V. Fomin  Petr A. Golovach
Affiliation:aDepartment of Computer Science, Kent State University, Kent, OH 44242, USA;bDepartment of Informatics, University of Bergen, PB 7803, N-5020 Bergen, Norway;cSchool of Engineering and Computing Sciences, Durham University, South Road, DH1 3LE Durham, UK
Abstract:A t-spanner of a graph G is a spanning subgraph S in which the distance between every pair of vertices is at most t times their distance in G. If S is required to be a tree then S is called a tree t-spanner of G. In 1998, Fekete and Kremer showed that on unweighted planar graphs deciding whether G admits a tree t-spanner is polynomial time solvable for t?3 and is NP-complete when t is part of the input. They also left as an open problem if the problem is polynomial time solvable for every fixed t?4. In this work we resolve the open question of Fekete and Kremer by proving much more general results:
  • • 
    The problem of finding a t-spanner of treewidth at most k in a given planar graph G is fixed parameter tractable parameterized by k and t. Moreover, for every fixed t and k, the running time of our algorithm is linear.
  • • 
    Our technique allows to extend the result from planar graphs to much more general classes of graphs. An apex graph is a graph that can be made planar by the removal of a single vertex. We prove that the problem of finding a t-spanner of treewidth k is fixed parameter tractable on graphs that do not contain some fixed apex graph as a minor, i.e. on apex-minor-free graphs. The class of apex-minor-free graphs contains planar graphs and graphs of bounded genus.
  • • 
    Finally, we show that the tractability border of the t-spanner problem cannot be extended beyond the class of apex-minor-free graphs and in this sense our results are tight. In particular, for every t?4, the problem of finding a tree t-spanner is NP-complete on K6-minor-free graphs.
Keywords:Graph algorithms   Parameterized complexity   Spanners   Distances   Planar graphs   Apex-minor-free graphs   Treewidth
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号