首页 | 本学科首页   官方微博 | 高级检索  
     

基于长短期记忆网络的售电量预测模型研究
作者姓名:方志强  王晓辉  夏通
作者单位:国网浙江省电力有限公司丽水供电公司
摘    要:售电量预测对优化供电结构以及了解经济走势具有重要意义,然而,传统售电量预测方法难以从售电量及其影响因素的数据中自动抽取到较好的数据特征。为此,文中提出一种基于长短期记忆网络的售电量预测模型,该模型通过分析售电量数据及其影响因素的相关性,提出一种行业聚类方法,该方法根据不同行业的数据特征对相似的行业进行聚类,并根据聚类结果训练长短期记忆网络模型。文中模型能够学习售电量数据以及相关影响因素的数据特征和内在关联关系。实验结果表明,文中所提出的预测模型比经典的预测模型具有更高的准确度。

关 键 词:深度学习  循环神经网络  长短期记忆网络  售电量预测
收稿时间:2018-01-13
修稿时间:2018-02-26
本文献已被 CNKI 等数据库收录!
点击此处可从《电力工程技术》浏览原始摘要信息
点击此处可从《电力工程技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号