Abstract: | The melting and crystallisation behaviour of crystalline phases in poly (hexamethylene terephthalate)/poly(oxytetramethylene) block copolymers have been investigated in relation to copolymer composition and polyether block molecular weight (m.w.). In contrast to that in corresponding homopolymer blends, the polyester crystallinity in the block polymers is greatly reduced by incorporation of polyether units, though some persists even at low polyester contents. Concomitant changes in the glass transition temperatures show part of the polyester component to form a homogeneous component of the amorphous phase. The mechanical properties change with composition in parallel with the changes in copolymer crystallinity and Tg. Copolymers with 20-60 w % of poly(oxytetramethylene) units of m.w. 2000 are highly extensible elastomers. Those with higher m. w. polyether blocks have higher modulus and strength but suffer a serious loss of properties at 60d?C. The observations are interpreted in terms of a model in which polyester crystallites (and polyether crystallites also, for the higher m. w. polyether blocks) are supported within an amorphous matrix by tie-molecules whose nature changes with the copolymer compositions. The results are compared with those for analogous polyester-polyethers having different structural components. |