首页 | 本学科首页   官方微博 | 高级检索  
     


Wet granular materials in sheared flows
Authors:Wen-Lung Yang
Affiliation:Department of Mechanical Engineering, National Central University, Chung-Li, 32054 Taiwan, ROC
Abstract:The transport properties of wet granular materials in a shear cell apparatus have been studied. If the particles are wet, the flow becomes more viscous forming liquid bridges between particles. The dynamic liquid bridge forces are considered as the cohesive forces between particles to restrict their movements. The cohesive forces make the particles stick tighter with each other and hamper the movement of particles. The mixing and transport properties are influenced seriously by the amount of moisture added in the flow. This paper discusses a series of experiments performed in a shear cell device with five different moisture contents using 3-mm glass spheres as the granular materials. The motion of granular materials was recorded by a high-speed camera. Using the image processing technology and particle tracking method, the average and fluctuation velocities in the streamwise and transverse directions could be measured. The self-diffusion coefficient could be found from the history of the particle displacements. The self-diffusion coefficients and fluctuations in the streamwise direction were much larger than those in the transverse direction. Three bi-directional stress gages were installed to the upper wall to measure the normal and shear stresses of the granular materials along the upper wall. For wetter granular material flows, the fluctuation velocities and the self-diffusion coefficients were smaller.
Keywords:Moisture content   Cohesive   Granular flows   Shear cell   Self-diffusion coefficient   Stress gage
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号