首页 | 本学科首页   官方微博 | 高级检索  
     


A high-speed complementary silicon bipolar technology with 12-fJpower-delay product
Authors:Cressler   J.D. Warnock   J. Harame   D.L. Burghartz   J.N. Jenkins   K.A. Chuang   C.-T.
Affiliation:Dept. of Electr. Eng., Auburn Univ., AL;
Abstract:A complementary silicon bipolar technology offering a substantial improvement in power-delay performance over conventional n-p-n-only bipolar technology is demonstrated. High-speed n-p-n and p-n-p double-polysilicon, self-aligned transistors were fabricated in a 20-mask-count integrated process using an experimental test site designed specifically for complementary bipolar applications. N-p-n and p-n-p transistors with 0.50-μm emitter widths have cutoff frequencies of 50 GHz and 13 GHz, respectively. Two novel complementary bipolar circuits-AC-coupled complementary push-pull ECL, and NTL with complementary emitter-follower-display a significant advantage in power dissipation as well as gate delay when compared to conventional n-p-n-only ECL circuits. Record power-delay products of 34 fJ (23.2 ps at 1.48 mW) and 12 fJ (19.0 ps at 0.65 mW) were achieved for these unloaded complementary circuits, respectively. These results demonstrate the feasibility and resultant performance leverage of high-speed complementary bipolar technologies
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号