首页 | 本学科首页   官方微博 | 高级检索  
     


Support vector machine with genetic algorithm for machinery fault diagnosis of high voltage circuit breaker
Authors:Jian Huang  Xiaoguang HuFan Yang
Affiliation:School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, PR China
Abstract:Based on empirical mode decomposition (EMD) method and support vector machine (SVM), a new method for the fault diagnosis of high voltage circuit breaker (CB) is proposed. The feature extraction method based on improved EMD energy entropy is detailedly analyzed and SVM is employed as a classifier. Radial basis function (RBF) is adopted as the kernel function of SVM and its kernel parameter γ and penalty parameter C must be carefully predetermined in establishing an efficient SVM model. Therefore, the purpose of this study is to develop a genetic algorithm-based SVM (GA-SVM) model that can determine the optimal parameters of SVM with the highest accuracy and generalization ability. The classification accuracy of this GA-SVM approach is tried by real dataset and compared with the SVM, which has randomly selected kernel function parameters. The experimental results indicate that the classification accuracy of this GA-SVM approach is more superior than that of the artificial neural network and the SVM which has constant and manually extracted parameters.
Keywords:Vibration signal   Empirical mode decomposition   Support vector machine   Fault diagnosis   Genetic algorithm
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号