首页 | 本学科首页   官方微博 | 高级检索  
     

基于差分进化算法的动态环境经济电力系统调度优化
引用本文:孙成富,周海岩,张亚红. 基于差分进化算法的动态环境经济电力系统调度优化[J]. 计算机科学, 2012, 39(11): 208-211
作者姓名:孙成富  周海岩  张亚红
作者单位:(淮阴工学院计算机工程学院 淮安223003)
摘    要:
电力系统动态环境经济调度优化隶属于非线性优化问题范畴,并具有多目标、高维、多约束条件等特点。经典的数学规划方法无法处理此类复杂问题。为此,提出了新的方法来解决这个问题。首先,通过代价惩罚因子将双目标优化问题转化为单目标优化问题。然后,设计启发式搜索策略来解决调度问题中的爬坡约束、动态电力平衡约束。采用启发式策略修正解决方案,能够提高群体的多样性,拓展搜索空间。基于优先列表的启发式策略能够使能耗低的火力发电机拥有更高的优先级进行更多的电力输出,以得到更优的调度解决方案。最后,改进差分进化算法,以加快搜索的速度并提高解决方案的质量。

关 键 词:差分进化算法,动态电力系统,调度优化,启发式策略,多目标

Dynamic Environment Economic Dispatch Based on Differential Evolution Algorithm
Abstract:
Dynamic environment economic dispatch is of non-linear optimization problems. It represents the characteris-tics of multi-objective,high dimensions and constraints. So the traditional methods are no longer fit to solving these op-timization problems. A price penalty factor approach was utilized here to convert the bi-objective problems into singleobjective ones. In order to handle constraints effectively,heuristic rules were proposed to handle ramp rate constraints,and heuristic strategics based on priority list arc employed to handle active power balance constraints. The heuristicstrategics also can increase the variety of the individual and extend the search scope. I}he thermal unit with the loweraverage full-load cost will have the higher priority to dispatch more generation power in the heuristic strategies based onpriority list, so that the even better scheduling solutions can be obtained. At last, the differential evolution algorithm wasimproved to enhance the search ability and improve the solution quality.
Keywords:Differential evolution algorithm   Dynamic power systems   Scheduling optimization   Heuristic strategy   Multiobj cctivc
点击此处可从《计算机科学》浏览原始摘要信息
点击此处可从《计算机科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号