首页 | 本学科首页   官方微博 | 高级检索  
     


EFFECTS OF HYDROCARBON LIQUID FEED IN POLYETHYLENE POLYMERIZATION PROCESS ON PARTICLE SURFACE TEMPERATURE
Authors:K K Botros  G Price  V Ker  Y Jiang  S K Goyal
Affiliation:  a Fluid Dynamics Group, NOVA Chemicals Research & Technology Centre, Calgary, Alberta, Canada b Gas Phase PE Process R&D Group, NOVA Chemicals Research & Technology Centre, Calgary, Alberta, Canada
Abstract:In the fluidized bed gas phase polymerization of polyethylene (PE), the heat generated by the exothermic polymerization process is dissipated into the gas mixture flowing past the polymer particles. The polymer particle temperature is determined by the extent of convective heat transfer and other mechanisms of heat removal. In addition to the heat removal by convective heat transfer, liquid hydrocarbon (HC) is often injected into the reactor to further remove heat by evaporation but without partaking in the reaction. The effects of adding this liquid HC on the particle surface temperature have been investigated numerically by means of a one-dimensional polar model. Results indicate that the primary mechanism for removal of the heat of polymerization from the particles is by means of convective heat transfer to the bulk gas, which amounts to 99.5% removal of total heat of polymerization. The PE particle temperature rises only by 1-2°C above the surrounding bed gas mixture. The addition of liquid HC to the feed, however, has a pronounced effect on controlling the reactor gas temperature as most of this liquid is evaporated to the gaseous phase before it reaches the polymer particles. To state it clearly, heat of polymerization is transferred from the particles to the reactor bulk gas predominantly by convection, and part of this heat is subsequently absorbed by evaporation of the fresh liquid HC in the feed. Comparison with a detailed computational fluid dynamic (CFD) model of polymerization in a generic gas phase reactor has also been conducted. The results confirm that the particle temperature rise above the reactor gas temperature is consistent with the one-dimensional model. However, local gas temperature variations are present in the reactor due to the unsteady gas-solid hydrodynamics. Hence, there are some zones that are a few degrees hotter/colder than the bulk reactor temperature with corresponding increase/decrease in particle temperature in these zones.
Keywords:Computation fluid dynamics  Fluidized bed  Gas-phase reactors  Gas-solid flow  Particle heat transfer  Polyethylene polymerization
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号