摘 要: | 为提高汛期降雨量中长期预报的精度,采用芒种日分析充分提取有用信息,基于BP神经网络模型,构建了芒种日分析的BP神经网络耦合模型,并将其应用于北京市中长期汛期降雨量的预测。结果表明:相比于常规BP模型,耦合BP模型能够有效提高预报的精度,验证期耦合BP模型模拟值与实测值相关系数为0.78,明显优于常规BP模型的0.42;耦合BP模型较常规BP模型的预报合格率提高了40%。芒种日分析能够充分发掘隐藏在原始数据中的有用信息,降低极端值等噪声数据对预报结果的影响,有效提高了模型的预报精度。将传统节气与人工智能预报技术相结合,为中长期汛期降雨量预报提供了一种新思路。
|