首页 | 本学科首页   官方微博 | 高级检索  
     

3Y-TZP/LZAS微晶玻璃功能梯度涂层的微观结构与性能
引用本文:龚 伟,李 华,周黎明,白朝中,王恩泽. 3Y-TZP/LZAS微晶玻璃功能梯度涂层的微观结构与性能[J]. 无机材料学报, 2017, 32(1): 63-68. DOI: 10.15541/jim20160206
作者姓名:龚 伟  李 华  周黎明  白朝中  王恩泽
作者单位:(1. 西南科技大学 制造科学与工程学院, 绵阳621010; 2. 中国工程物理研究院 激光聚变研究中心, 绵阳 621900; 3. 西南科技大学 国防科技学院, 绵阳621010; 4. 西南科技大学 材料科学与工程学院, 绵阳621010)
基金项目:四川省高校科技成果转化培育项目(15ZC0011);西南科技大学自然科学基金(15ZX7157)
摘    要:为了提高钢基体微晶玻璃涂层的韧性, 在Q235钢基体上采用涂搪法制备了钇稳定四方相氧化锆/Li2O- ZnO-Al2O3-SiO2 (3Y-TZP/LZAS) 微晶玻璃功能梯度涂层。采用XRD、SEM分析了梯度涂层的物相组成和微观结构, 采用压痕法测试并计算了涂层的显微硬度和断裂韧性, 通过粘接-拉伸法测试了涂层的结合强度。结果表明, 3Y-TZP/LZAS微晶玻璃功能梯度涂层各层之间的界面结合紧密; 涂层与钢基体依靠玻璃中的SiO2与铁的氧化物发生界面反应形成牢固的结合, 反应产物为Fe2SiO4和FeSiO3; 涂层的显微硬度和断裂韧性沿涂层厚度方向逐渐增大, 涂层韧性提高是表面残余压应力增韧、3Y-TZP相变及3Y-TZP的颗粒增韧共同作用的结果; 梯度涂层与Q235的结合强度达16.3 MPa。热震实验表明, 梯度涂层在300℃下经历30余次热循环, 表现出较好的抗热震性能。

关 键 词:功能梯度涂层  微晶玻璃  涂搪法  微观结构  
收稿时间:2016-03-29
修稿时间:2016-07-05

Microstructure and Properties of 3Y-TZP/LZAS Glass-ceramic Functionally Gradient Coatings
GONG Wei,LI Hua,ZHOU Li-Ming,BAI Cao-Zhong,WANG En-Ze. Microstructure and Properties of 3Y-TZP/LZAS Glass-ceramic Functionally Gradient Coatings[J]. Journal of Inorganic Materials, 2017, 32(1): 63-68. DOI: 10.15541/jim20160206
Authors:GONG Wei  LI Hua  ZHOU Li-Ming  BAI Cao-Zhong  WANG En-Ze
Affiliation:(1. School of Manufacturing Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; 2. Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China; 3.School of National Defence Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China; 4.School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China)
Abstract:In order to improve toughness of glass-ceramic coatings, 3mol% yattria-tetragonal zirconia polycrystal/Li2O-ZnO-Al2O3-SiO2 (3Y-TZP/LZAS) glass-ceramic functionally gradient coatings on Q235 steel substrate were prepared by slurry method. Phase constitution and microstructure of samples were examined by XRD and SEM, respectively. Their micro-hardness and fracture toughness were measured by indentation method. And their bonding strength of the coatings was also investigated by pulling test. Resulting data indicate that the seamless interfaces among toughening coatings, LZAS transition layer and substrate are obtained. SiO2 in the LZAS glass reacts with iron oxides at interfacial region forming Fe2SiO4 and FeSiO3, which causes tight interface bind between gradient coatings and steel substrate. Micro-hardness and fracture toughness from inner substrate to top surface on the section of the coatings increase gradually. Residual compressive stress toughening, 3Y-TZP particles toughening and 3Y-TZP transformation toughening are the dominant factors for improving fracture toughness of the gradient coatings. Bonding strength of the coatings is up to 16.3 MPa. The gradient coatings withstand more than 30 thermal cycles at 300℃, demonstrating their excellent thermal sock resistance.
Keywords:functionally gradient coating  glass-ceramic  slurry method  microstructure  
本文献已被 CNKI 等数据库收录!
点击此处可从《无机材料学报》浏览原始摘要信息
点击此处可从《无机材料学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号