首页 | 本学科首页   官方微博 | 高级检索  
     

一种改进的k-均值聚类算法
引用本文:徐义峰,陈春明,徐云青. 一种改进的k-均值聚类算法[J]. 计算机应用与软件, 2008, 25(3): 275-277
作者姓名:徐义峰  陈春明  徐云青
作者单位:1. 衢州学院信息与电子工程系,浙江,衢州,324000
2. 桂林电子科技大学图书馆,广西,桂林,541004
摘    要:针对k-均值(k-means)聚类算法中随机选取初始聚类中心的缺陷,提出了一种新的基于数据样本分布选取初始聚类中心的方法.实验结果表明,改进后的算法能改善其聚类性能,并能取得较高的分类准确率.

关 键 词:k-均值聚类  聚类中心  数据分布
收稿时间:2007-02-05
修稿时间:2007-02-05

AN IMPROVED CLUSTERING ALGORITHM FOR K-MEANS
Xu Yifeng,Chen Chunming,Xu Yunqing. AN IMPROVED CLUSTERING ALGORITHM FOR K-MEANS[J]. Computer Applications and Software, 2008, 25(3): 275-277
Authors:Xu Yifeng  Chen Chunming  Xu Yunqing
Affiliation:Xu Yifeng1 Chen Chunming2 Xu Yunqing11(Department of Information , Electronics Engineering,Quzhou College,Quzhou 324000,Zhejiang,China)2(Department of Library,Guilin University of Electronic Technology,Guilin 541004,Guangxi,China)
Abstract:Considering the shortcomings of k-means algorithm, a new improved algorithm is proposed. A new method for selecting original clustering center based on data distribution is presented. Experimental results demonstrate that the improved algorithm can enhance the clustering performance and the clustering accuracy of k-means.
Keywords:K-means clustering Clustering center Data distribution
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号