首页 | 本学科首页   官方微博 | 高级检索  
     


Integrated process design,scheduling, and model predictive control of batch processes with closed-loop implementation
Authors:Baris Burnak  Efstratios N Pistikopoulos
Affiliation:Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
Abstract:Simultaneous evaluation of multiple time scale decisions has been regarded as a promising avenue to increase the process efficiency and profitability through leveraging their synergistic interactions. Feasibility of such an integral approach is essential to establish a guarantee for operability of the derived decisions. In this study, we present a modeling methodology to integrate process design, scheduling, and advanced control decisions with a single mixed-integer dynamic optimization (MIDO) formulation while providing certificates of operability for the closed-loop implementation. We use multi-parametric programming to derive explicit expressions for the model predictive control strategy, which is embedded into the MIDO using the base-2 numeral system that enhances the computational tractability of the integrated problem by exponentially reducing the required number of binary variables. Moreover, we apply the State Equipment Network representation within the MIDO to systematically evaluate the scheduling decisions. The proposed framework is illustrated with two batch processes with different complexities.
Keywords:batch process  model predictive control  multi-parametric programming  process design  scheduling  state equipment network
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号