首页 | 本学科首页   官方微博 | 高级检索  
     


A finite element analysis of fracture initiation in ductile/brittle periodically layered composites
Authors:M Jha  PG Charalambides
Affiliation:(1) Department of Mechanical Engineering, The University of Maryland, Baltimore County, Baltimore, MD, 21250, U.S.A
Abstract:A near-tip plane strain finite element analysis of a crack terminating at and normal to the interface in a laminate consisting of alternate brittle and ductile layers is conducted under mode-I loading. The studies are carried out for a system representing steel/alumina composite laminate. The Gurson constitutive model, which accounts for the ductile failure mechanisms of microvoid nucleation, growth and coalescence, is employed within the framework of small deformation plasticity theory. Evolution of plastic zone and damage in the ductile layer is monitored with increasing load. High plastic strain localization and microvoid damage accumulation are found to occur along the brittle/ductile interface at the crack-tip. Fracture initiation in the ductile phase is predicted and the conditions for crack renucleation in the brittle layer ahead of the crack are established for the system under consideration. Ductile fracture initiation has been found to occur before plasticity spreads in multiple ductile layers. Effects of material mismatch and yield strength on the plastic zone evolution are briefly discussed. This revised version was published online in August 2006 with corrections to the Cover Date.
Keywords:Fracture  initiation  near-tip  plastic zone microvoid  nucleation  mode-I loading  laminate  composite brittle  ductile  
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号