首页 | 本学科首页   官方微博 | 高级检索  
     


An automatic method for atom identification in scanning tunnelling microscopy images of Fe‐chalcogenide superconductors
Authors:A. PERASSO  C. TORACI  A.M. MASSONE  M. PIANA  A. GERBI  R. BUZIO  S. KAWALE  E. BELLINGERI  C. FERDEGHINI
Affiliation:1. CNR‐SPIN Institute for Superconductors, Innovative Materials and Devices, Genova, Italy;2. IRCCS San Martino – IST, Genova, Italy;3. Dipartimento di Matematica, Università di Genova, Genova, Italy
Abstract:
We describe a computational approach for the automatic recognition and classification of atomic species in scanning tunnelling microscopy images. The approach is based on a pipeline of image processing methods in which the classification step is performed by means of a Fuzzy Clustering algorithm. As a representative example, we use the computational tool to characterize the nanoscale phase separation in thin films of the Fe‐chalcogenide superconductor FeSexTe1‐x, starting from synthetic data sets and experimental topographies. We quantify the stoichiometry fluctuations on length scales from tens to a few nanometres.
Keywords:Atoms  fuzzy clustering  image analysis  iron‐chalcogenide  pattern recognition  scanning tunnelling microscopy  superconductors  thin films
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号