首页 | 本学科首页   官方微博 | 高级检索  
     


Diagnostic flow metering using ultrasound tomography
Authors:Sejong Chun  Byung-Ro Yoon  Kwang-Bock Lee
Affiliation:(1) Lehrstuhl für Strömungsmechanik, Fakultät für Maschinenbau, Ruhr-Universität Bochum, 44780 Bochum, Germany
Abstract:
For an accurate flow metering without considering the influences of flow control devices such as valves and elbows in closed conduits, velocity distribution in the cross-sectional area must be integrated. However, most flow meters, including multi-path ultrasonic, electromagnetic or Coriolis mass flow meters, require assumptions on the fully-developed turbulent flows to calculate flow rates from physical quantities of their own concern. Therefore, a long straight pipe has been a necessary element for accurate flow metering because the straight pipe can reduce flow disturbances caused by flow control devices. To reduce costs due to the installation of long straight pipes, another flow metering technique is required. For example, flow rates can be estimated by integrating velocity distributions in the crosssection of conduits. In the present study, ultrasound tomography was used to find the velocity distribution in the cross-section of a closed conduit where flow was disturbed by a Coriolis mass flow meter or a butterfly valve. A commercial multi-path ultrasonic flow meter was installed in the pipeline to measure the line-averaged velocity distribution in the pipe flow. The ultrasonic flow meter was rotated 180° at intervals of 10° to construct line-averaged velocity distributions in Radon space. Flow images were reconstructed by using a backprojection algorithm (inverse Radon transform). Flow diagnostic parameters were defined by calculating statistical moments, i.e., average, standard deviation, skewness, and kurtosis, based on the normalized velocity distribution. The flow diagnostic parameters were applied to flow images to find whether the parameters could discern flow disturbances in the reconstructed velocity distribution.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号