首页 | 本学科首页   官方微博 | 高级检索  
     


Gate-induced drain leakage current degradation and its time dependence during channel hot-electron stress in n-MOSFETs
Authors:Lo   G.Q. Kwong   D.L.
Affiliation:Dept. of Electr. & Comput. Eng., Texas Univ., Austin, TX, USA;
Abstract:The effects of channel hot-electron stress on the gate-induced drain leakage current (GIDL) in n-MOSFETs with thin gate oxides have been studied. It is found that under worst case stress, i.e. a high density of generated interface states Delta D/sub it/, the enhanced GIDL exhibits a significant drain voltage dependence. Whereas Delta D/sub it/ increases significantly the leakage current at low V/sub d/, it has minor effects at high V/sub d/. On the other hand, the electron trapping was found to increase the leakage current rather uniformly over both low and high V/sub d/ regions. In addition, GIDL degradation can be expressed as a power law time dependence (i.e. Delta I/sub leak/=A.t/sup n/), and the time dependence value n varies according to the dominant damage mechanism (i.e. electron trapping against Delta D/sub it/), similar to that reported for on-state device degradation.<>
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号