数据隐私保护的社会化推荐协议 |
| |
作者姓名: | 刘曙曙 刘安 赵雷 刘冠峰 李直旭 郑凯 周晓方 |
| |
作者单位: | 1. 苏州大学 计算机科学与技术学院,江苏 苏州 215000;2. 江苏省软件新技术与产业化协同创新中心,江苏 南京 211102 |
| |
基金项目: | 国家自然科学基金资助项目(61572336, 61572335, 61303019, 61402313) |
| |
摘 要: | 基于邻域的社会化推荐需要同时依赖用户的历史行为数据和完善的社交网络拓扑图,但通常这些数据分别属于不同平台,如推荐系统服务提供商和社交网络服务提供商。出于维护自身数据价值及保护用户隐私的考虑,他们并不愿意将数据信息提供给其他方。针对这一现象,提出了2种数据隐私保护的社会化推荐协议,可以在保护推荐系统服务提供商和社交网络服务提供商的数据隐私的同时,为用户提供精准的推荐服务。其中,基于不经意传输的社会化推荐,计算代价较小,适用于对推荐效率要求较高的应用;基于同态加密的社会化推荐,安全程度更高,适用于对数据隐私要求较高的应用。在4组真实数据集上的实验表明,提出的2种方案切实可行,用户可以根据自身需求选择合适的方案。
|
关 键 词: | 推荐系统 不经意传输 同态加密 Yao’s协议 |
收稿时间: | 2015-10-21 |
|
| 点击此处可从《通信学报》浏览原始摘要信息 |
|
点击此处可从《通信学报》下载全文 |
|