多粒度融合的命名实体识别 |
| |
作者姓名: | 孙红 王哲 |
| |
作者单位: | 上海理工大学光电信息与计算机工程学院 |
| |
基金项目: | 国家自然科学基金(61472256,61170277,61703277); |
| |
摘 要: | 目前主流的命名实体识别算法都是从词汇增强的角度出发,引入外部词汇信息提升NER模型获取词边界信息的能力,并未考虑到中文字结构信息在此任务中的重要作用。因此,该文提出多粒度融合的命名实体识别算法,同时引入中文字结构与外部词汇信息,通过编码汉字中每个字部件,并使用注意力机制使得文本序列中的字启发式地融合细粒度信息,赋予模型获取中文字形特征的能力。在多个命名实体识别数据集上的实验结果显示,该算法在模型精度以及推理速度方面具有较大优势。
|
关 键 词: | 信息抽取 中文命名实体识别 注意力机制 词汇增强 中文字形特征 |
|
|