Interval type-2 fuzzy logic based multiclass ANFIS algorithm for real-time EEG based movement control of a robot arm |
| |
Affiliation: | 1. Department of Electronics & Telecommunication Engineering, Jadavpur University, Kolkata, 700032, India;2. School of Bioscience & Engineering, Jadavpur University, Kolkata, 700032, India;1. Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, NC, USA;2. Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA;3. Dept. of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA;4. Dept. of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA;1. Centre for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, Denmark;2. Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand;3. Faculty of Health and Environmental Sciences, Health and Rehabilitation Research Institute, AUT University, Auckland, New Zealand;4. Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Denmark;1. Computer Engineering Department, Institute of Engineering and Management, Kolkata, India;2. AKCSIT, University of Calcutta, India |
| |
Abstract: | Brain–computer interfacing is an emerging field of research where signals extracted from the human brain are used for decision making and generation of control signals. Selection of the right classifier to detect the mental states from electroencephalography (EEG) signal is an open area of research because of the signal’s non-stationary and Ergodic nature. Though neural network based classifiers, like Adaptive Neural Fuzzy Inference System (ANFIS), act efficiently, to deal with the uncertainties involved in EEG signals, we have introduced interval type-2 fuzzy system in the fray to improve its uncertainty handling. Also, real-time scenarios require a classifier to detect more than two mental states. Thus, a multi-class discriminating algorithm based on the fusion of interval type-2 fuzzy logic and ANFIS, is introduced in this paper. Two variants of this algorithm have been developed on the basis of One-Vs-All and One-Vs-One methods. Both the variants have been tested on an experiment involving the real-time control of robot arm, where both the variants of the proposed classifier, produces an average success rate of reaching a target to 65% and 70% respectively. The result shows the competitiveness of our algorithm over other standard ones in the domain of non-stationary and uncertain signal data classification. |
| |
Keywords: | Real-time control Interval type-2 fuzzy system Adaptive neural fuzzy inference system Multi-class classification Motor imagery |
本文献已被 ScienceDirect 等数据库收录! |
|