首页 | 本学科首页   官方微博 | 高级检索  
     


Time-varying autoregressions with model order uncertainty
Authors:RAQUEL,PRADO &   GABRIEL,HUERTA
Affiliation:Universidad Simón Bolívar and Centro de Investigación en Matemáticas, Mexico
Abstract:We explore some aspects of the analysis of latent component structure in non-stationary time series based on time-varying autoregressive (TVAR) models that incorporate uncertainty on model order. Our modelling approach assumes that the AR coefficients evolve in time according to a random walk and that the model order may also change in time following a discrete random walk. In addition, we use a conjugate prior structure on the autoregressive coefficients and a discrete uniform prior on model order. Simulation from the posterior distribution of the model parameters can be obtained via standard forward filtering backward simulation algorithms. Aspects of implementation and inference on decompositions, latent structure and model order are discussed for a synthetic series and for an electroencephalogram (EEG) trace previously analysed using fixed order TVAR models.
Keywords:Dynamic linear models    time-varying autoregressions    model uncertainty    time series decompositions    Markov chain    Monte Carlo (MCMC)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号