首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于支持向量的二进制粒子群网络故障特征选择算法
引用本文:夏爱民,;温祥西,;张宏志. 一种基于支持向量的二进制粒子群网络故障特征选择算法[J]. 计算机与网络, 2014, 0(23): 68-73
作者姓名:夏爱民,  温祥西,  张宏志
作者单位:[1]后勤学院研究生管理大队,北京100036; [2]空军工程大学空管领航学院,陕西西安710077; [3]61139部队,北京100911
摘    要:网络故障诊断中大量无关或冗余的特征会降低诊断的精度,需要对初始特征进行选择。Wrapper模式特征选择方法分类算法计算量大,为了降低计算量,本文提出了基于支持向量的二进制粒子群(SVB-BPSO)的故障特征选择方法。该算法以SVM为分类器,首先通过对所有样本的SVM训练选出SV集,在封装的分类训练中仅使用SV集,然后采用异类支持向量之间的平均距离作为SVM的参数进行训练,最后根据分类结果,利用BPSO在特征空间中进行全局搜索选出最优特征集。在DARPA数据集上的实验表明本文提出的方法能够降低封装模式特征选择的计算量且获得了较高的分类精度以及较明显的降维效果。

关 键 词:网络故障  特征选择  二进制粒子群  支持向量

A Support Vector Based Binary Particle Swarm Optimization Feature Selection Algorithm
Affiliation:XIA M-rain, WEN Xiang-xi ZhANG Hong-zhi(1. Graduate Management Unit of The Logistics College,PLA,Beijing 100036,China; 2.1nstitute of Air Traffic Control and Navigation, Air Force Engineering University, Xi'an Shanxi 710077, China ; 3.61139 PLA Troops,Beijing 100091 ,China )
Abstract:In network fault diagnosis, many irrelevant and redundant features lessen the performance of diagnosis, feature selection is introduced on this condition. The wrapper feature selection algorithnas get large calculation cost, a support vector based binary particle swarm optimization(SVB-BPSO) feature selection algorithm was proposed in this paper. The support vectors(SVs) are selected from the whole datasets by SVM training, the following wrapper classification focus only on these SVs. The training parameter is decided by average distance between different class SVs. Based on the SVM classifiers, the BPSO is used for searching the whole feature space to find the best feanlre subset. Experiments on DARPA datasets show the proposed method can reduce the wrapper feature selection's calculation cost while gets good performance on diagnosis accuracy and dhnensional decrease.
Keywords:network fault  feature setection  BPSO  support vector
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号