首页 | 本学科首页   官方微博 | 高级检索  
     


Modelling speech emotion recognition using logistic regression and decision trees
Authors:Agnes Jacob
Affiliation:1.Department of Applied Electronics and Instrumentation,Government Engineering College,Kozhikode,India
Abstract:Speech emotion recognition has been one of the interesting issues in speech processing over the last few decades. Modelling of the emotion recognition process serves to understand as well as assess the performance of the system. This paper compares two different models for speech emotion recognition using vocal tract features namely, the first four formants and their respective bandwidths. The first model is based on a decision tree and the second one employs logistic regression. Whereas the decision tree models are based on machine learning, regression models have a strong statistical basis. The logistic regression models and the decision tree models developed in this work for several cases of binary classifications were validated by speech emotion recognition experiments conducted on a Malayalam emotional speech database of 2800 speech files, collected from ten speakers. The models are not only simple, but also meaningful since they indicate the contribution of each predictor. The experimental results indicate that speech emotion recognition using formants and bandwidths was better modelled using decision trees, which gave higher emotion recognition accuracies compared to logistic regression. The highest accuracy obtained using decision tree was 93.63%, for the classification of positive valence emotional speech as surprised or happy, using seven features. When using logistic regression for the same binary classification, the highest accuracy obtained was 73%, with eight features.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号