首页 | 本学科首页   官方微博 | 高级检索  
     

基于低秩稀疏分解的红外弱小目标检测算法研究进展
作者姓名:罗俊海  余杭
作者单位:电子科技大学信息与通信工程学院
基金项目:四川省自然科学基金(2023NSFSC0508);
摘    要:红外探测系统具有隐蔽性好、抗干扰能力强等特点,广泛应用于军事和民用领域,红外弱小目标的检测是红外探测系统中的重要组成部分,已成为了当前的研究热点。近年来,学者们在基于低秩稀疏分解的红外弱小目标检测算法研究方面取得了丰硕的成果,为此,重点阐述了基于低秩稀疏分解的红外弱小目标检测算法的研究现状和研究进展。从背景分量约束、目标分量约束和联合时域信息约束等3个方面详细地综述了基于低秩稀疏分解的红外弱小目标检测算法。首先把背景分量约束划分为块图像的低秩约束、张量的低秩约束和全变分约束,其次从目标的稀疏性表示和融合局部先验的目标分量加权策略两方面分析了目标分量的约束,然后分析了联合时域信息约束,将典型的基于低秩稀疏分解的检测算法和单帧检测算法进行了性能对比,最后讨论了该领域下一步的研究方向。

关 键 词:机器视觉  红外图像  低秩稀疏分解  弱小目标检测  低秩近似
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号