摘 要: | 针对普通卷积神经网络在遥感图像分割中小目标识别度不高、分割精度低的问题,提出了一种结合特征图切分模块和注意力机制模块的遥感影像分割网络AFSM-Net。首先在编码阶段引入特征图切分模块,对每个切分的特征图进行放大,通过参数共享的方式进行特征提取;然后,将提取的特征与网络原输出图像进行融合;最后,在网络模型中引入注意力机制模块,使其更关注图像中有效的特征信息,忽略无关的背景信息,从而提高模型对小目标物体的特征提取能力。实验结果表明,所提方法的平均交并比达到86.42%,相比于DeepLabV3+模型提升了3.94个百分点。所提方法充分考虑图像分割中小目标的关注度,提升了遥感图像的分割精度。
|