Neoplastic transformation induced by insulin receptor substrate-1 overexpression requires an interaction with both Grb2 and Syp signaling molecules |
| |
Authors: | S Tanaka T Ito JR Wands |
| |
Affiliation: | Molecular Hepatology Laboratory, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA. |
| |
Abstract: | The insulin receptor substrate-1 (IRS-1) is the major intracellular substrate of insulin and insulin-like growth factor-I (IGF-I) receptor tyrosine kinase activity, and this protein has been found to be overexpressed in human hepatocellular carcinomas. IRS-1 contains several src homology 2 (SH2) binding motifs that interact following tyrosyl phosphorylation with SH2-containing proteins, and this interaction may be essential for transmitting the growth signal from the cell surface to the nucleus. We have previously reported that overexpression of IRS-1 may induce neoplastic transformation of NIH 3T3 cells. This study examines the role of two SH2-containing molecules, namely the Grb2 adapter and Syp tyrosine phosphatase proteins as important components of the cellular transforming activity of IRS-1. Mutations of tyrosine 897 in the YVNI motif (Y897F) and of tyrosine 1180 in the YIDL motif (Y1180F) reduced the intracellular interaction of IRS-1 with Grb2 and Syp proteins, respectively. Furthermore, a single mutation at either Phe-897 or Phe-1180 substantially but not completely reduced IGF-I-dependent transforming activity of IRS-1, whereas creation of a double mutation of both tyrosine residues (Y897F/Y1180F) strikingly attenuated the transforming activity of IRS-1. Stable expression of the IRS-1 mutant constructs in NIH 3T3 cells was associated with a lower level of activation of the mitogen-activated protein kinase kinase (MAPKK)/MAPK cascade following IGF-I stimulation compared with cells stably transfected with the "wild-type" IRS-1 gene. These results suggest that IRS-1-induced cellular transformation requires an interaction with both Grb2 and Syp signal transduction molecules since neither interaction alone appears to be required, and this event subsequently leads to activation of the MAPKK/MAPK cascade. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|