首页 | 本学科首页   官方微博 | 高级检索  
     

改进的协同过滤算法
引用本文:许建潮,王红梅. 改进的协同过滤算法[J]. 长春邮电学院学报, 2008, 0(1): 99-105
作者姓名:许建潮  王红梅
作者单位:长春工业大学计算机科学与工程学院,长春130012
基金项目:吉林省科技发展基金资助项目(20060305)
摘    要:针对传统的CF(Collaborative Filtering)算法和基于项目评分的CF算法中存在的数据稀疏、扩展性及计算效率低的问题,通过引用评价系数,对其相似性计算和推荐集的选取方法进行了改进,提出了一种改进的基于相关相似性的CF算法,产生更为准确的用户兴趣度预测,从而提高系统推荐的质量与推荐效率。对改进算法进行实验和性能对比与评价的结果表明,改进算法与传统算法相比,能显著提高推荐精度,平均绝对误差(MAE:Mean Absolute Error)为0.53~0.77。

关 键 词:推荐系统  协同过滤  推荐算法  平均绝对偏差

Improvement on Correlation Similar Collaborative Filtering Algorithm
XU Jian-chao,WANG Hong-mei. Improvement on Correlation Similar Collaborative Filtering Algorithm[J]. Journal of Changchun Post and Telecommunication Institute, 2008, 0(1): 99-105
Authors:XU Jian-chao  WANG Hong-mei
Affiliation:(School of Computer Science and Engineering, Changchun University of Technology, Changchun 130012, China)
Abstract:In view of the limitation of the traditional CF ( Collaborative Filtering) algorithm and the CF algorithm based on the project grading which the data are sparse, extended and the counting efficiency is low, a similar computation and the recommendation selection method based on the correlation similar CF algorithm is proposed. This method improve similar computation and the recommendation collection selection method by introducing an evaluation factor. It has a more accurate user interest forecast, and enhances the system recommendation the quality and the recommendation efficiency. The experiment and the performance analysis for the improved algorithm are made, proved that the improved algorithm can obviously increase the recommendation precision, MAE (Mean Absolute Error) is 0. 53 -0. 77.
Keywords:recommendation system  collaborative filtering  recommendation algorithm  mean absolute error ( MAE )
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号