首页 | 本学科首页   官方微博 | 高级检索  
     

基于多子空间线性判别分析的特征提取与分类
引用本文:董琰. 基于多子空间线性判别分析的特征提取与分类[J]. 计算机工程与设计, 2012, 33(4): 1591-1594,1681
作者姓名:董琰
作者单位:中石化胜利油田分公司ERP支持中心,山东东营,257000
摘    要:为了解决高维小样本数据的分类中Fisherface思想判别分析方法的不足,在最大散度差准则的基础上,提出了利用多线性子空间技术对每类样本进行单独描述的方法,该方法能更准确地反映样本在类内类间的分布关系.在分类中不是以距离作为判别依据,而是按照贝叶斯决策规则得到的隶属置信度作为衡量标准.实验结果表明了该方法的有效性,和同类方法相比,有更高的识别率.

关 键 词:高维小样本问题  多子空间  线性判别分析  特征提取  分类

Feature extraction and classification based on multisubspace linear discriminant analysis
DONG Yan. Feature extraction and classification based on multisubspace linear discriminant analysis[J]. Computer Engineering and Design, 2012, 33(4): 1591-1594,1681
Authors:DONG Yan
Affiliation:DONG Yan (ERP Support Center of Sinopec Shengli Oilfield Branch Company,Dongying 257000,China)
Abstract:In classification of high-dimensional statistical data underlying small sample size problem,in order to solve Fisherface thought lack of discriminant analysis method,sample of each class is described using multisubspace technique and maximum scatter difference criterion to reflect sample between-class and within-class distribution more accurate.Criterion of classification is confidence from Bayes rule ranther than distance.Results demonstrated that the performance of the proposed method is superior to that of traditional approaches.As far as recognition rate is concerned,a marked improvement is obtained.
Keywords:high-dimensional and small sample size problem  multisubspace  linear discriminant analysis  feature extraction  classification
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号