首页 | 本学科首页   官方微博 | 高级检索  
     

自适应调整控制参数的差异演化算法
引用本文:武志峰,黄厚宽. 自适应调整控制参数的差异演化算法[J]. 计算机工程与设计, 2012, 33(3): 1175-1180
作者姓名:武志峰  黄厚宽
作者单位:1. 天津职业技术师范大学信息技术工程学院,天津,300222
2. 北京交通大学计算机与信息技术学院,北京,100044
基金项目:天津职业技术师范大学科技基金项目(KYQD09013)
摘    要:控制参数选取是包括差异演化在内的演化算法设计时所面临的一个重要问题,对算法的性能有着重大影响.针对差异演化算法参数选取问题,提出一种利用个体适应度作为参数调整决策依据,并结合一定的调整概率对F和CR进行自适应调整的方法,解决了手工设置控制参数的不便.同时利用交叉操作生成双子代个体与父代个体竞争形成新一代种群,加快了算法的收敛.对标准测试函数的仿真实验结果表明,该算法无论在最优解质量和收敛速度上都优于相关算法,尤其对于高维函数而言.

关 键 词:自适应参数控制  差异演化算法  双子代竞争  演化计算  函数优化

Self-adapting control parameters in differential evolution
WU Zhi-feng , HUANG Hou-kuan. Self-adapting control parameters in differential evolution[J]. Computer Engineering and Design, 2012, 33(3): 1175-1180
Authors:WU Zhi-feng    HUANG Hou-kuan
Affiliation:1.School of Information Technology and Engineering,Tianjin University of Technology and Education,Tianjin 300222, China;2.School of Computer and Information Technology,Beijing Jiaotong University,Beijing 100044,China)
Abstract:Parameters setting is an important problem of evolution algorithms,including differential evolution algorithm.It has an effect on the performance of evolution algorithms.According to the problem of parameters of differential evolution,a method is presented,which uses self-adaptive as a scientific evidence to adjust parameters and set F and CR combined with modulated probability.An algorithm is presented,which depends on the fitness of individual and modulated probability set the parameters F and CR automatically.This method can get the optimal control parameters for different optimization problem without user interaction.Moreover,two trial vectors are created by recombination for increased colony diversity and avoided premature convergence.These vectors compete with the parent individual to be the next generation.Experimental results indicate that the proposed algorithm is efficient and feasible.It is superior to other related methods such as DE,jDE,FADE,MPDE,DDE both on the quality of solution and on the convergence rate,especially for high dimension functions.
Keywords:self-adaptive parameter control  differential evolution algorithm  doubles trial vectors  evolution computing  optimization
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号