首页 | 本学科首页   官方微博 | 高级检索  
     


A longitudinal crack in a cylindrical shell under internal pressure
Authors:Lawrence G. Copley  J. Lyell Sanders Jr.
Affiliation:(1) Harvard University, USA;(2) Present address: Cambridge Acoustical Associates, Inc., Cambridge, Massachusetts;(3) Harvard University, USA
Abstract:
The study relates to the strength of a cracked shell. Linear thin shell theory is employed to obtain solutions for internal pressure and uniform circumferential bending. A shallow shell approximation is used, and shown valid providing crack length and shell thickness are small enough in comparison with shell radius. Initial formulation as a boundary value problem is shown equivalent to two coupled singular integral equations. These were solved numerically using a computer. Stresses are found to display singularities as inverse square-root of distance from a crack tip, as with the flat plate. The main results are graphs of normal and bending stress singularity strengths against a curvature/crack-length dimensionless parameter.
Zusammenfassung Diese Arbeit behandelt die Stärke von einer gerissenen Schale. Die lineare Theorie dünner Schalen ist benutzt um dieses Problem für den Innendruck und gleichmäßige Umkreis-biegung zu lösen. Die Annäherungen der mäßig gekrümte Schalen sind benutzt welche zulassig sind nur wenn die Rißlänge und die Dicke der Schale klein sind im Vergleich zu dem Schalradius. Die anfängliche Formelierung als ein Randwertproblem ergibt sich als gleichwertig zwei gekuppelten singulären Integralgleichungen. Diese sind numerisch gelöst mit Hilfe einer Rechenautomat. Die Spannungen zeigen, in Übereinstimmung mit der flachen Platte, umgekehrte Quadratwurzelsingularitäten. Die Resultaten der Stärke der Normal- und Biegung-spannungsingularitäten sind graphisch als Funktion eines dimensionslosen Krümmungs-Rißlängeparameter gegeben.

Résumé Cette étude est sur la résistance d'une monocque fêlée longitudinalement. À l'aide de la théorie linéare des toques minces élastiques l'on obtient la solution de deux cas: 1) coque sous pression intérieure et 2) flexion circonférentielle uniforme. On fait l'approximation que la coque est de faible profondeur et l'on démontre que les solutions sont valables pourvu que la longeur de la fêlure et l'épaisseur de la coque soient assez petites comparées au rayon de la coque. On formule d'abord un système elliptique des équations aux dérivées partielles, qui se transforme en deux équations intégrales simultanées. Celles-ci sent résolues numériquement à l'aide d'un ordinateur. On trouve que la contrainte possède des singularités proportionelles à l'inverse de la racine carrée de la distance d'une extrémité de la fêlure: ce résultat est identique à celui qui existe pour une plaque. Les résultats principaux que l'on présente sont des courbes de l'amplitude de ces singularités en fonction d'un paramètre charactéristique de la grandeur de la fêlure et du rayon de la coque.

Notation c half crack length, inch - E Young's modulus of elasticity, psi - h thickness of shell, inch - Mt twisting moment resultant - Minfin circumferential bending moment resultant far from crack - Mx, My, Mxy bending and twisting moment resultants - Nx, Ny, Nxy normal and shear stress resultants - pi internal pressure, psi - p0 reference pressure, psi - Q, Qx, Qy transverse shear stress resultants - R radius of shell, inch - x, y Cartesian coordinates for shallow shell formulation, inch - w outward radial displacement of cylindrical shell, inch - gamma Euler constant (0.5772...) - lambda dimensionless parameter, lambda2=[3(1–v2)/4]1/2(c2/Rh) - v Poisson's ratioThis work was supported in part by the Office of Naval Research under Contract Nonr 1866(02), in part by the National Aeronautics and Space Administration under Grant NsG-559, and by the Division of Engineering and Applied Physics, Harvard University.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号