首页 | 本学科首页   官方微博 | 高级检索  
     

基于特征对齐和关键点辅助激励的退化热成像图目标检测
引用本文:刘盛,金坤,王俊,叶焕然,程豪豪. 基于特征对齐和关键点辅助激励的退化热成像图目标检测[J]. 模式识别与人工智能, 2020, 33(12): 1104-1114. DOI: 10.16451/j.cnki.issn1003-6059.202012005
作者姓名:刘盛  金坤  王俊  叶焕然  程豪豪
作者单位:1.浙江工业大学 计算机科学与技术学院 杭州 310014
基金项目:国家重点研发计划;浙江省科技厅项目
摘    要:在热成像图目标检测中,存在图像的纹理单一、目标边界模糊等退化现象,这造成目标定位困难、目标与预定义锚点框无法精准匹配等问题.因此,文中提出基于特征对齐和关键点辅助激励的退化热成像图目标检测算法.引入可见光图分支,计算2个分支指定层的特征差异,提升热成像域与可见光域之间的相似度.为了丰富网络高层中的目标细节信息,修改特征图级联和检测尺度.部署包含关键点辅助激励的无锚点检测器,较好地定位目标并学习预定义锚点框覆盖较差的实例.在2个数据集上的对比实验表明,文中算法可准确定位热成像目标,有效提升退化热成像图目标检测精度.

关 键 词:热成像图  目标检测  特征对齐  关键点辅助激励
收稿时间:2020-09-10

Object Detection in Degraded Thermal Image Based on Feature Alignment and Assisted Excitation of Key Points
LIU Sheng,JIN Kun,WANG Jun,YE Huanran,CHENG Haohao. Object Detection in Degraded Thermal Image Based on Feature Alignment and Assisted Excitation of Key Points[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(12): 1104-1114. DOI: 10.16451/j.cnki.issn1003-6059.202012005
Authors:LIU Sheng  JIN Kun  WANG Jun  YE Huanran  CHENG Haohao
Affiliation:1. College of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310014
Abstract:In the object detection of thermal images,the image degradation phenomena,like the simple texture and the blurred object boundary,result in difficulties in localizing objects and matching the objects with the predefined anchor boxes.Therefore,an object detection algorithm for degraded thermal image based on feature alignment and assisted excitation of key points is proposed.Firstly,the visible image branch is introduced,and the similarity between the thermal domain and the visible domain is improved by calculating the feature difference of specified layers in two branches.Then,feature map concatenation and detection scale are modified to enrich the details of objects in the high-level network layers.Finally,an anchor-free detector with assisted excitation of key points is deployed,and thus the model localizes objects better and learn the instances poorly covered by the predefined anchor boxes.Comparative experiments on two datasets show that the proposed algorithm localizes thermal objects accurately and improves the accuracy of object detection in degraded thermal image effectively.
Keywords:Thermal Image  Object Detection  Feature Alignment  Assisted Excitation of Key Points  
本文献已被 万方数据 等数据库收录!
点击此处可从《模式识别与人工智能》浏览原始摘要信息
点击此处可从《模式识别与人工智能》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号