首页 | 本学科首页   官方微博 | 高级检索  
     

基于U-Net网络的医学图像分割研究综述
作者姓名:宋杰  刘彩霞  李慧婷
作者单位:1. 江苏师范大学智慧教育学院;2. 江苏师范大学江苏省教育信息化工程技术研究中心
基金项目:国家自然科学基金(62007028);
摘    要:近年来随着深度学习技术的快速发展,卷积神经网络(CNN)成为语义分割的重要支撑框架,被广泛运用于多种目标检测与分割的任务当中。在医学图像分割任务中,U-Net网络以其优异的分割性能、可拓展性的网络结构等特点成为该领域研究的热点。如今有众多学者从网络的结构等方面对U-Net进行改进以优化网络性能、提升分割准确度。研究通过对相关文献的分析,首先介绍了基于U-Net的经典改进模型;然后阐述了六大U-Net改进机制:注意力机制、inception模块、残差结构、空洞机制、密集连接结构以及集成网络结构;随后介绍了医学图像分割常用评价指标和非结构化改进方案,这些非结构化改进方法包括数据增强、优化器、激活函数和损失函数四个方面;之后列举并分析了在肺结节、视网膜血管、皮肤病和颅内肿瘤新冠肺炎四大医学图像分割领域的改进模型;最后对U-Net网络的未来发展进行展望,为相关研究提供思路。

关 键 词:医学图像分割  深度学习  人工智能  U-Net  卷积神经网络
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号