首页 | 本学科首页   官方微博 | 高级检索  
     

基于PSO和外部知识的时序数据异常检测
作者姓名:丁美荣  王昭泓  郑辛茹  张迎春
作者单位:华南师范大学软件学院,佛山 528225
基金项目:广东省普通高校人工智能重点领域专项(2019KZDZX1033)
摘    要:在时间序列数据的异常检测中,单一模型往往只提取与自身模型结构相关的时序特征,从而容易忽略其他特征.同时,面对大规模的时序数据,模型难以对时序数据的局部趋势进行建模.为了解决这两个问题,本文提出一种基于粒子群优化算法(particle swarm optimization,PSO)和外部知识的异常检测模型PEAD.PEAD模型以深度学习模型作为基模型,引入快速傅里叶变换生成的外部知识来提高基模型对局部趋势的建模能力,随后PEAD模型以Stacking集成学习的方式训练基模型,再使用PSO算法对基模型的输出加权求和,对加权求和后的重构数据进行异常检测,PSO算法能够让模型的最终输出共同关注时序数据的全局特征和时间特征,丰富模型提取的时序特征,从而提高模型的异常检测能力.通过对 6 个公开数据集进行测试,研究结果表明PEAD模型在大部分数据集上表现良好.

关 键 词:时间序列数据  异常检测  快速傅里叶变换  Stacking集成学习  粒子群优化算法
收稿时间:2023-07-24
修稿时间:2023-10-09
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号