首页 | 本学科首页   官方微博 | 高级检索  
     


On variable-weighted exact satisfiability problems
Authors:Stefan Porschen
Affiliation:1.Institut für Informatik,Universit?t zu K?ln,K?ln,Germany
Abstract:
We show that the NP-hard optimization problems minimum and maximum weight exact satisfiability (XSAT) for a CNF formula C over n propositional variables equipped with arbitrary real-valued weights can be solved in O(||C||20.2441n ) time. To the best of our knowledge, the algorithms presented here are the first handling weighted XSAT optimization versions in non-trivial worst case time. We also investigate the corresponding weighted counting problems, namely we show that the number of all minimum, resp. maximum, weight exact satisfiability solutions of an arbitrarily weighted formula can be determined in O(n 2·||C||?+?20.40567n ) time. In recent years only the unweighted counterparts of these problems have been studied (Dahllöf and Jonsson, An algorithm for counting maximum weighted independent sets and its applications. In: Proceedings of the 13th ACM-SIAM Symposium on Discrete Algorithms, pp. 292–298, 2002; Dahllöf et al., Theor Comp Sci 320: 373–394, 2004; Porschen, On some weighted satisfiability and graph problems. In: Proceedings of the 31st Conference on Current Trends in Theory and Practice of Informatics (SOFSEM 2005). Lecture Notes in Comp. Science, vol. 3381, pp. 278–287. Springer, 2005).
Keywords:Weighted exact satisfiability  Exact algorithm  Combinatorial optimization  Counting problem  NP-completeness  Perfect matching  Maximum weight independent set  Set partition
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号