首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of UV degradation on surface hydrophobicity, crack, and thickness of MWCNT-based nanocomposite coatings
Authors:R. Asmatulu  G.A. MahmudC. Hille  H.E. Misak
Affiliation:Department of Mechanical Engineering, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0133, United States
Abstract:Surface degradation is a common problem in polymeric coatings when they are exposed to sunlight, moisture, and oxygen. In order to reduce their surface degradation, thus keeping the coatings’ original properties, multi-wall carbon nanotubes (MWCNTs) were added, and the coatings were exposed to UV light and salt fog for various lengths of time. At 0 days of UV exposure, contact angle values of 0%, 0.25%, 0.5%, 1%, and 2% MWCNT-based nanocomposite coatings of 75 μm (∼3 mil) thickness were between 85° and 89°. However, after 16 days of UV exposure, contact angle values of the same samples were reduced to 11°, 13°, 34°, 50°, and 54°, respectively. Longer UV exposures resulted in several microcracks on the surface of the coated samples in the absence of nanoscale inclusions, while very minimal cracks or degradation appeared on the MWCNT-loaded samples. Test results also showed that UV exposure along with salt fogging reduced the coating thickness up to 24% at 0% CNTs; in contrast, this reduction was only 7% with a 2% MWCNT coating. These results clearly indicate that MWCNTs added to polymeric coatings reduce UV degradation, lessen surface cracks, protect the film thickness, and hence increase the lifetime of the polymeric coatings.
Keywords:Nanocomposite coating   UV degradation   Contact angle   Surface cracks   Film thickness
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号