首页 | 本学科首页   官方微博 | 高级检索  
     

基于ARIMA模型的光纤陀螺随机漂移滤波方法研究
引用本文:徐帆,马广富. 基于ARIMA模型的光纤陀螺随机漂移滤波方法研究[J]. 传感器与微系统, 2007, 26(2): 31-32,36
作者姓名:徐帆  马广富
作者单位:哈尔滨工业大学,航天学院,控制科学与工程系,黑龙江,哈尔滨,150001
摘    要:
对光纤陀螺随机漂移输出进行了非平稳性检验,并建立了非平稳求和自回归滑动平均(ARIMA)模型,在此模型的基础上对光纤陀螺随机漂移进行卡尔曼(Kalman)滤波,并对滤波结果进行Allan方差分析。与基于自回归(AR)模型的Kalman滤波结果进行比较,实验结果表明:基于ARIMA模型的Kalman滤波比基于AR模型的Kalman滤波更能减小光纤陀螺的零偏不稳定性和角度随机游走。

关 键 词:ARIMA模型  AR模型  卡尔曼滤波  Allan方差
文章编号:1000-9787(2007)02-0031-02
修稿时间:2006-12-30

Investigation on filter method of FOG drift data based on ARIMA model
XU Fan,MA Guang-fu. Investigation on filter method of FOG drift data based on ARIMA model[J]. Transducer and Microsystem Technology, 2007, 26(2): 31-32,36
Authors:XU Fan  MA Guang-fu
Affiliation:Department of Control Science and Engineering, School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
Abstract:
FOG drift data is validated to be a non-stationary time series and a ARIMA model is established. The FOG drift data is processed by using Kalman filter; and the filter results are analyzed and fitted by Allan variance analyzing method and least squares method. In addition, an AR model is discussed and compared with the ARIMA model. Experimental result shows that ARIMA model based Kalman filter is efficient in reducing the bias instability and angle random walk.
Keywords:ARIMA model   AR model   Kalman filter   Allan variance
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号